Tag: bryanmoyers

Where Do Genes Come From? Part 2: De novo Genes

Author: Bryan Moyers

Editors: Theresa Mau, Alex Taylor, and Kevin Boehnke

“The probability that a functional protein would appear de novo by random association of amino acids is practically zero.” ~ Francois Jacob, 1977

If you’ve ever gotten into arguments about evolution, you may have heard the argument that goes something like this: A new gene randomly forming is as improbable as a tornado blowing through a junkyard and assembling a working 747. The above quote by Francois Jacob shows that scientists have been pretty skeptical about this idea, too.

But something seeming unlikely doesn’t mean that it doesn’t happen. As we learned last time, most mutations are harmful, and most gene duplications are lost—but the rare times when they are beneficial, a new gene can have a huge effect on species survival.

So, is it possible that a protein-coding gene might form randomly?

Of Sporks and Scorpions: Where Do Genes Come From? (Part 1)

Author: Bryan Moyers

Editors: Theresa Mau, Alex Taylor, and Kevin Boehnke

What exactly separates us from other animals?  For that matter, what makes any species or group of species special?  How is life so diverse?  How can cephalopods camouflage themselves so well, and how did platypuses become so bizarre?

Part of the answer is in genes.  Genes are sections of DNA that perform a specific function, usually after being translated into proteins by special cellular machinery.  Every species has genes that code for proteins, but different species have different numbers of genes. Humans have around 20,000, fruit flies have around 18,000, and the tiny water-flea has around 31,000 genes. Different sets of genes produce animals with different structures and functions.

Science behind the scenes: The costs and payoffs of science

By: Bryan Moyers

Edited by:  David Mertz, Shweta Ramdas, Scott Barolo, Kevin Boehnke

Why haven’t we cured cancer?  Physicians have known about cancer for over 5000 years, and the United States spends nearly $5 billion per year on cancer research.  But there’s still no cure.  Also, where is our clean, renewable energy?  We can’t even catch half the energy in sunlight, and solar panels don’t come cheap!  Why don’t we have a moon colony yet or a male birth control pill?

In the U.S., science funding comes from many sources, including the taxpayers.  As an example, half a percent of the federal budget goes to fund NASA, before considering all of the money that goes to the National Science Foundation (NSF) or the National Institutes of Health and other federal science organizations.  It is reasonable that publicly-funded science should provide some benefit for the public, but it seems like there’s a lot of scientific research out there that’s not giving us the technologies and discoveries we want and need.   So why do we throw money at projects that don’t seem to deliver?

Science behind-the-scenes: Which fields are “real sciences”?

Author: Bryan Moyers

Content Editors: Christina Vallianatos, Molly Kozminsky

Senior Editor: Alisha John

 

 

Well, that field isn’t really science.”

Oh, that’s just a soft science.”

Most people who work in the sciences have probably heard phrases like these.  Translation: that field is lesser.  The physicists say it about everyone lower than them in the pecking order, as do the chemists, biologists, and so on down the line.  The nuclear physicist Ernest Rutherford famously said, “All science is either physics or stamp-collecting.”  People argue about this at scientific conferences and in the media.   The science and pop-culture webcomic xkcd has even parodied the issue.

Science behind-the-scenes: Correlation and causation

By Bryan Moyers

When talking about scientific issues, the phrase “Correlation doesn’t imply causation” is sometimes thrown around.  But what does it mean?  Science makes statements about cause and effect.  Smoking causes lung cancer.  Carbon emissions cause climate change.  Higher temperatures cause increased violence.  Clearly, scientists have some way of inferring causal relationships.  But how do they grapple with the idea that “Correlation doesn’t imply causation”?  If they don’t use correlation, what tools do they use to infer causation?

Evolvability: The race against extinction

By Bryan Moyers

It’s easy to think that evolution only works over long periods of time.  As much as 4.1 billion years ago, life began on Earth.  Some 420 million years ago, animals found their way onto land. Around 65 million years ago, an asteroid wiped out most dinosaurs. Two million years ago, our genus, Homo, emerged.  It almost seems like evolution is a strictly theoretical field.  After all, evolution doesn’t affect things in our lifetime…  right?

Science behind-the-scenes: “And that is a scientific FACT!”

By Bryan Moyers

In the film Anchorman: The Legend of Ron Burgundy, there is a scene where the quartet of male leads is screaming at their boss.  They are outraged over the hiring of a woman for the position of news anchor.  At one point, David Koechner’s character leans forward over the desk and announces:

“It is anchorMAN, not anchorLADY, and THAT IS A SCIENTIFIC FACT!”

Science behind-the-scenes: (Almost) Everything grade school taught you about science is wrong

By Bryan Moyers

Do you remember being taught the “Scientific Method” in school? There were always slight variations, but it went something like:

  1. Ask a question
  2. Do background research
  3. Form an educated guess (hypothesis)
  4. Test your hypothesis by doing an experiment
  5. Analyze your data and draw a conclusion
  6. If your hypothesis is wrong, return to step 3 with a new hypothesis.
  7. Communicate your results

These steps seem like a great tool to introduce students to science.  They’re simple and easy to understand once the teacher explains words like “hypothesis” and “experiment”.  If you’re like me, perhaps you remember it seeming straightforward—scientists follow a linear set of steps that produce powerful results. Teachers drilled that method into us grade after grade.  If only they weren’t completely wrong.