How to Fold (and Misfold) a Protein (Part 1)

Author: Sarah Kearns

Editors: David Mertz, Zulierys Santana-Rodriguez, and Scott Barolo

Proteins do most of the work in your body: Depending on their shape, they can digest your food, fire your neurons, give color to your eyes and allow you to see colors. Proteins follow instructions encoded in your DNA to fold into their shape, but how do they “know” what shape to fold into to perform their biological functions? What happens when they fold incorrectly?

Continue reading “How to Fold (and Misfold) a Protein (Part 1)”

String Theory: Worth the Wait or Just Stringing Us Along? (Part 2)

Author: Molly Kozminsky

Editors: Theresa Mau, Jimmy Brancho, and Alisha John

In my previous post, I discussed what string theory is, how it has not been experimentally verified, and how the existence of Higgs boson was proved fifty years after it was first proposed. In this post, I will continue to discuss the lengthy process of validating the theory of gravitational waves and where we stand with string theory research.

Continue reading “String Theory: Worth the Wait or Just Stringing Us Along? (Part 2)”

String Theory: Worth the Wait or Just Stringing Us Along? (Part 1)

Author: Molly Kozminsky

Editors: Theresa Mau, Jimmy Brancho, and Alisha John

July 2016 was all about taking potshots at string theorists. First, Bryan Moyers pointed out that people questioned if their field is really science. Then they showed up in the Ghostbusters reboot as the villains.

But what is it about string theory that inspires such vitriol? String theory suffers from a number of problems that inspire strong feelings and entire books. Over forty years of research have passed without yielding the promised “Theory of Everything,” with many scientists questioning whether it is even possible to confirm the theory. But before we write off string theory entirely, it might help to think about other long-shot theories such as the Higgs boson and gravity waves, and more generally about string theory itself.

So, what is string theory anyway?

Continue reading “String Theory: Worth the Wait or Just Stringing Us Along? (Part 1)”

Michigan Researchers Seek New Chemistries to Diversify Rechargeable Battery Applications

Author: Jimmy Brancho

Editors: Irene Park and David Mertz

battery-lab
Figure 1. Researchers at the University of Michigan are testing new battery materials in coin cell batteries. Locked inside one of these cells could be a breakthrough that will push energy storage forward.

Off the Danish coast in Copenhagen, Don Siegel, an associate professor in the University of Michigan’s College of Engineering, is on sabbatical. He said the ocean is speckled with tall, white windmills. At some sites, they stand in great curving rows; at others, they’re arrayed in a geometrical pattern.

“Denmark’s very windy,” he said over the phone.

He’s right. The country, according to Energinet, receives 42 percent of its electrical power from wind alone. In fact, Siegel said sometimes there are “emergency situations” where the turbines are pumping out electricity faster than it can be used.

“If we had extra energy storage, imagine what we could do with that,” he said. Continue reading “Michigan Researchers Seek New Chemistries to Diversify Rechargeable Battery Applications”

Science Behind the Scenes: Model Organisms—The Unsung Heroes of Biomedical Research

Author: Noah Steinfeld

Editors: Alex Taylor, Christina Vallianatos, and Bryan Moyers

In 2001 the Nobel Prize in Physiology or Medicine was awarded to three scientists, Leland Hartwell, Tim Hunt and Paul Nurse, for their discoveries of key regulators of the cell cycle. Normally, before a cell can divide, it must undergo several phases of the cell cycle in a precise order. First, a cell grows in size, then duplicates its DNA, and finally distributes its DNA evenly between two daughter cells. The three researchers played seminal roles in identifying the mechanisms by which cells transition from one cell cycle phase to the next.

These fundamental discoveries are not only crucial to our understanding of biology, but have applications in human disease. Many types of cancer are linked to mutations that cause cells to move quickly through or even skip some parts of the cell cycle, making cell cycle regulation a hot area of biological research. Given the implications this research has for human health, it might surprise you that many cell cycle regulators were not first discovered in humans. Instead, these cell cycle regulators were identified and characterized in model organisms including yeast and sea urchins.

“But what do I have in common with the yeast I use to bake bread?” you might ask. As it turns out, a lot more than you’d think.

Continue reading “Science Behind the Scenes: Model Organisms—The Unsung Heroes of Biomedical Research”

More than Meets the Eye: How Optical Illusions Stump Our Brains

Author: Haley Amemiya

Editors: Kevin Boehnke, Zuleirys Rodriguez, Patricia Garay, and Scott Barolo

ninio
Figure 1. Ninio’s Extinction Illusion

There are twelve black spots in scientist Jacques Ninio’s Extinction Illusion. Can you see them all at once? Continue reading “More than Meets the Eye: How Optical Illusions Stump Our Brains”

Introverts & Extroverts: It’s Not as Simple as Shy or Outgoing (Part 2)

Author: Ellyn Schinke

Editors: Whit Froehlich, Nayiri Kaissarian, and Irene Park

In my last post, I wrote about the social differences between introverts and extroverts and the misconceptions surrounding the two personalities. This post will focus on the underlying brain biology that contributes to whether a person is an extrovert or an introvert.

The more I read about these personalities, the more I wondered—are there ways in which the biology can explain the social differences? It turns out that there are several known, key differences in the brain biology between introverts and extroverts.

Continue reading “Introverts & Extroverts: It’s Not as Simple as Shy or Outgoing (Part 2)”