What the Octopus Genome Can Tell Us

Author: Shweta Ramdas

Editors: Irene Park, Ada Hagan, Alisha John

The team at MiSciWriters certainly finds cephalopods fascinating, and we aren’t alone. Last year, the octopus (Octopus bimaculoides) was added to the growing list of organisms whose genome sequence is known.

Octopuses belong to a class of organisms called cephalopods, which literally means ‘head-feet’ (members of the cephalopod family have a head and tentacles or arms). These tentacles enable the creatures to do some very clever maneuvering, such as escaping their aquariums to eat crabs outside their tanks. It’s no surprise then that these are the most intelligent amongst invertebrates and now new information about the octopus genome can tell us more about these fascinating creatures.

Continue reading “What the Octopus Genome Can Tell Us”

Superbugs and a New School Year: How You Can Help Slow Antibiotic Resistance

Author: Carrie Johnson

Editors: Ada Hagan, Irene Park

Whether you have heard about it or not, antibiotic resistance is a growing threat that affects us all.

For generations, we have benefitted from antibiotics to fight bacterial infections that would otherwise threaten our lives.  Unfortunately, the effectiveness of antibiotics is increasingly at risk.  Bacterial infections resistant to antibiotics already have already taken a significant toll and the severity of the problem is only growing.  In the United States, it already costs us over 23,000 lives and an estimated $55 billion each year.

As we head into a new school year and the colder winter months when illness risks seem to rise, the timing couldn’t be better to remind you that everyone (yes, you!) plays a role in combating this growing problem of antibiotic resistance. But first we need to understand the basics of this problem, including the three major factors at play.

Continue reading “Superbugs and a New School Year: How You Can Help Slow Antibiotic Resistance”

Science behind the scenes: The costs and payoffs of science

By: Bryan Moyers

Edited by:  David Mertz, Shweta Ramdas, Scott Barolo, Kevin Boehnke

Why haven’t we cured cancer?  Physicians have known about cancer for over 5000 years, and the United States spends nearly $5 billion per year on cancer research.  But there’s still no cure.  Also, where is our clean, renewable energy?  We can’t even catch half the energy in sunlight, and solar panels don’t come cheap!  Why don’t we have a moon colony yet or a male birth control pill?

In the U.S., science funding comes from many sources, including the taxpayers.  As an example, half a percent of the federal budget goes to fund NASA, before considering all of the money that goes to the National Science Foundation (NSF) or the National Institutes of Health and other federal science organizations.  It is reasonable that publicly-funded science should provide some benefit for the public, but it seems like there’s a lot of scientific research out there that’s not giving us the technologies and discoveries we want and need.   So why do we throw money at projects that don’t seem to deliver?

Continue reading “Science behind the scenes: The costs and payoffs of science”

Virus vs Bacteria: The grand scheme

Author: Ada Hagan

Editors: Patricia Garay, Ellyn Schinke, Irene Park

In “Virus vs Bacteria: Mortal combat” we learned that bacteriophage (phage) are a group of viruses that literally prey on bacteria and archaea. Phage fill a predatory role in their native ecosystems, helping to keep prey populations in check, in turn preventing exhaustion of available resources. We also explored in “Virus vs Bacteria: Enemy of my enemy” how humans can exploit these bacterial predators to be useful in a number of ways. But there’s quite a bit more to phage than meets the eye. New research is beginning to show us additional ecological impacts phage have on their environments—ones that can play a role in challenges humans face such as climate change and antibiotic resistance.

Continue reading “Virus vs Bacteria: The grand scheme”

Interpreting ancient DNA: Not so easy a caveman could do it

Author: Brooke Wolford

Editors: Alex Taylor, Jimmy Brancho, Bryan Moyers

Imagine the year is 1856 and you are toiling in a quarry in the Neander Valley, a few kilometers from Düsseldorf, Germany. Strangely, something is abruptly sticking out of the landscape. You dig around and find ribs, a skull, and other bones—your best guess is that you have stumbled upon the final resting place of a bear. However, what you have actually found are the first identifiable remains of ancient hominins, later named Homo neanderthalensis.

Continue reading “Interpreting ancient DNA: Not so easy a caveman could do it”

It’s all in the family! The biology of inheritance, part 1

Author: Shweta Ramdas

Editors: Molly Kozminsky, Jimmy Brancho, Kevin Boehnke

 

Harry Potter has his mother’s eyes. From his father, James, he inherits his black hair, his ability to play Quidditch, and a certain predisposition to mischief. We are all unique combinations of our parents, receiving half our DNA from each. In the genetic lottery, our parents’ genes are scrambled and spliced to create a new individual who carries on the family’s long tradition of snoring into one’s sheets. But besides a rickety knee, shortness of stature, and preferred pizza toppings, what else can we blame on our parents?

Continue reading “It’s all in the family! The biology of inheritance, part 1”

De-coupling the GMO-glyphosate link

Author: Amira Aker

Editors: Brittany Dixon, Kevin Boehnke

Tinkering with an organism’s genes is the subject of one of the most controversial debates today – and rightfully so. The resulting organisms are commonly referred to as genetically modified organisms (GMOs), and figuring out how to use GMOs in a safe and sustainable manner is hotly debated. This issue isn’t simply a matter of technology, but one of safety, ecology, economics and even morality. Yet, there has been a notable absence of discussion around the broad-based herbicide glyphosate in mainstream media; namely, that over 80% of GMOs on the market today are modified to tolerate glyphosate. This effective herbicide kills pesky weeds without affecting farmers’ GMO crops, saving time and, potentially, money. However, given the vast opportunities that GMO science opens to us, is dedicating so many resources to this single GMO product the right way to go? Continue reading “De-coupling the GMO-glyphosate link”