Setting the Tone: How Physics Can Help Us Understand Musical Harmony (Part 2)

Author: Joseph Iafrate

Editors: Christina Vallianatos, Scott Barolo, and Bryan Moyers

*Editor’s Note: This post has several sound files to help readers understand the author’s message better. These sound files can be accessed via bolded links.

Part one of this post explained how physics gave us a new language for talking about musical notes. In part two, we look at combinations of notes. Will two notes sound pleasant together, or will they clash? We can apply what we’ve learned about frequencies to get an answer.

The Harmony of Ratios

If you’ve ever used the Pythagorean theorem, you are well-acquainted with one of Pythagoras’ contributions to society. Pythagoras was an ancient Greek philosopher and mathematician dedicated to discovering mathematical principles in the world around him. During his time, the Greeks already had an idea of which notes sounded good together, a pleasant combination of two or more notes that we call a harmony. Pythagoras and his followers could identify harmony by ear, but they wanted to see if the math that permeated the rest of their worldview had anything to say about this phenomenon.

According to legend, they took two taut strings of different lengths and plucked them at the same time. The sounds seemed to clash with one another. So the Pythagoreans increased the length of one of the strings and tried again. It was a bit better, but the notes still seemed to clash in their ears. So they increased the length again. This kept going until the sounds complemented one another. Eventually they got it just right, and the two notes were in harmony.

Continue reading “Setting the Tone: How Physics Can Help Us Understand Musical Harmony (Part 2)”

Setting the Tone: How Physics Can Help Us Understand Musical Harmony (Part 1)

Author: Joseph Iafrate

Editors: Christina Vallianatos, Scott Barolo, and Bryan Moyers

*Editor’s Note: This post has several sound files to help readers understand the author’s message better. These sound files can be accessed via bolded links. 

At my elementary school, entering the fifth grade meant we could finally join the school band, and for most of us, that was a big deal. I had been set on playing the clarinet for ages, so I was ready and raring to immediately dive into “Hot Cross Buns” and “Mary had a Little Lamb.”

But before we could do that, we had to learn how to name the building blocks of those songs and the sounds we were making: the musical notes. Our learner books instructed us to orient our fingers in a certain way and call the sound that came out a “G.” Western music labels its tones with the letters A through G. There are also modified notes (sharp and flat) such that we reach twelve total note names.

Continue reading “Setting the Tone: How Physics Can Help Us Understand Musical Harmony (Part 1)”

How Gecko Feet Will Make Your Next Move Easier

Author: Andrew McAllister

Editors: Ana Vasquez, Molly Kozminsky, and Kevin Boehnke

One of the most frustrating parts of moving is dealing with furniture. Most pieces need to be taken apart to fit through doors or into your moving van. Even if you’re lucky enough to have buff friends to help, one lost or stripped screw is enough to make you question your choice to cart everything miles away.

If only things could be simpler. Instead of screws, why not a super strong, reusable, and easy-to-detach piece of tape to hold your furniture together? Sounds like a tall order, but scientists inspired by a gravity-defying lizard, the gecko, are trying to make it a reality.

Continue reading “How Gecko Feet Will Make Your Next Move Easier”

String Theory: Worth the Wait or Just Stringing Us Along? (Part 2)

Author: Molly Kozminsky

Editors: Theresa Mau, Jimmy Brancho, and Alisha John

In my previous post, I discussed what string theory is, how it has not been experimentally verified, and how the existence of Higgs boson was proved fifty years after it was first proposed. In this post, I will continue to discuss the lengthy process of validating the theory of gravitational waves and where we stand with string theory research.

Continue reading “String Theory: Worth the Wait or Just Stringing Us Along? (Part 2)”

String Theory: Worth the Wait or Just Stringing Us Along? (Part 1)

Author: Molly Kozminsky

Editors: Theresa Mau, Jimmy Brancho, and Alisha John

July 2016 was all about taking potshots at string theorists. First, Bryan Moyers pointed out that people questioned if their field is really science. Then they showed up in the Ghostbusters reboot as the villains.

But what is it about string theory that inspires such vitriol? String theory suffers from a number of problems that inspire strong feelings and entire books. Over forty years of research have passed without yielding the promised “Theory of Everything,” with many scientists questioning whether it is even possible to confirm the theory. But before we write off string theory entirely, it might help to think about other long-shot theories such as the Higgs boson and gravity waves, and more generally about string theory itself.

So, what is string theory anyway?

Continue reading “String Theory: Worth the Wait or Just Stringing Us Along? (Part 1)”

NASA’s Juno mission: Unlocking secrets about Jupiter and ourselves

Author: Irene Park

Editors: Ada Hagan, Alisha John, Shweta Ramdas, Scott Barolo

On July 4th 2016, NASA announced that the spacecraft Juno arrived at Jupiter after traveling two billion miles over five years. Juno was designed to investigate the origin of Jupiter, our solar system’s largest planet.

Continue reading “NASA’s Juno mission: Unlocking secrets about Jupiter and ourselves”

New elements on the block

Author: David Mertz

Editors: Tricia Garay, Irene Park

Ever since an interactive display was built in my high school chemistry lab (one of only six such installations in the world), I’ve found the periodic table of elements to be a fascinating fixture of science. I remember watching the scientists prepare little displays for each individual element, including the metal gallium which they let me hold in my hand. It was different than most of the metals familiar to us. With a melting temperature just below 30 degrees Celsius (86 degrees Fahrenheit), the metallic cube began to melt right on my palm. Continue reading “New elements on the block”