Cómo las luciérnagas iluminaron nuestro entendimiento del mundo

Versión original en inglés escrita por Noah Steinfeld, traducida al español por Thibaut R. Pardo-García y editado por Sofía A. López.

A principios de 1950 en la Universidad Johns Hopkins, William E. McElroy, profesor joven, quiso descubrir que hace que las luciérnagas resplandezcan. Él le pagaba veinticinco centavos a niños en el área de Baltimore por cada 100 luciérnagas que le trajeran. McElroy era visto como una curiosidad en la comunidad: el estereotipo de un científico excéntrico. Pero, lo que estas personas no sabían es que, como resultado de su investigación, un día McElroy crearía una herramienta que revolucionaría la forma en que los científicos ejercen las investigaciones biológicas.

Continue reading “Cómo las luciérnagas iluminaron nuestro entendimiento del mundo”

The Humble Phosphate Ion: Making Life “Go”

Author: John Charpentier

Editors; Noah Steinfeld, Tricia Garay, and Scott Barolo

A glance into any organic chemistry or biochemistry textbook reveals a dizzying variety of chemical compounds, reactions and mechanisms. It is not at all obvious why one particular class of reaction, the attachment and detachment of a phosphate group (PO43-) to molecules like nucleotides and proteins, is central to making the chemistry of life “go.”

Proteins: Not Just for Getting Swole, Brah

Figure 1. A phosphate ion. Note the negative charges.

Proteins are the working-class heroes of the cell: they get things done. A protein’s function is largely determined by its shape, which in turn is dictated by the linear sequence of chemically distinct amino acid subunits it is composed of. The rules of protein folding are astonishingly complex. Generally speaking, the reluctance of hydrophobic (“water-fearing”) amino acids to project outward into the watery cytoplasm is the primary determinant of protein shape, but electrostatic interactions between amino acid residues are also important. Phosphate groups have three negative charges, which means that when they are linked to or removed from a protein by specialized enzymes, they can dramatically modify its shape and stability, and therefore its function. The phosphorylation/dephosphorylation cycle operates like a switch to regulate protein behavior: add a phosphate and you get a violent Mr. Hyde protein; take it off and you get the amiable Dr. Jekyll.


Figure 2. Cellular homunculi don’t exist – decisions are made by integrating signaling inputs from the environment to effect changes in gene expression.

So where do we find phosphorylation in biochemistry? The answer is: pretty much everywhere! I will discuss two key examples. Firstly, phosphorylation is important in “cell signaling,” the sensing of messages from outside a cell and their incorporation into cellular decision-making. It’s worth observing that there isn’t anything we’d recognize as a brain in cells – decision-making is an emergent property of the integration of these signals, not the doing of a microscopic cellular homunculus pulling levers or “thinking.”

Continue reading “The Humble Phosphate Ion: Making Life “Go””