Analyzing without Lysing: Non-Damaging Techniques for Monitoring Cells

Author: Sarah Kearns

Editors: Whit Froehlich, Ada Hagan, and Irene Park

The interior of a cell is inherently complex with a myriad of processes going on all at once. Despite the clean images that are commonly shown in diagrams and textbooks, the parts inside are more of a whirlwind of structural components, proteins, and products (see Figure 1).

23May17-1+2
Figure 1. Left is a cartoon image of a whole cell highlighting the different organelles (cellular compartments). Right is a computer simulation of the cytoplasm, the fluid between organelles. There are thousands of chemical processes going on within it.

Continue reading “Analyzing without Lysing: Non-Damaging Techniques for Monitoring Cells”

Trash Talk

Author: Sara Wong

Editors: Sarah Kearns, Ellyn Schinke, and Shweta Ramdas

Taking out the trash is a despised chore. It’s smelly and heavy, and you have to get off the comfortable couch, put on shoes, and take it all the way to the curb. Yet, we do it because we understand that it is important for the health of our homes and neighborhood, and taking out the trash is better than leaving it in the house.

What you might not realize is that your cells also have to take out the trash. In fact, defects in this process often lead to disease. One example is Niemann-Pick disease, which in severe cases causes death in early childhood. Neimann-Pick disease is caused by defective lysosomes, the trash bins of the cell. In order to understand diseases like Niemann-Pick disease, we must first understand lysosomes.

Continue reading “Trash Talk”

Can Patients with Early-Stage Breast Cancer Skip Chemotherapy?

Author: Lei Wan

Editors: Whit Froehlich and Shweta Ramdas

My mom was diagnosed with cancer two years ago. She had early-stage breast cancer: tumor size of less than five centimeters, fewer than three cancer-positive lymph nodes in the armpit region, and no cancer-positive lymph nodes nearby. But hers was also an aggressive type of cancer. At the time, I was a graduate student in the States and my parents lived in China, so we talked on the phone every two days about the progress of her treatment. She received surgery, radiation, a tailored drug treatment, and chemotherapy. My mom is tough and stubborn. Most of the time she just mentioned the good news that the cancer had been eliminated. Occasionally, she would say that her life was changed by the cancer treatment: for example, she had to quit her job.

I was shocked by my mom’s diagnosis. She is always physically active and mostly eats vegetables. I barely recognized her after the chemotherapy. She had lost 30 pounds and all of her hair, her skin was pale, and her nails were purple. Her face was unrecognizable because of the weight and hair loss, and she looked almost 20 years older.

My mom is cancer-free now, but she is not the same person that she was. Her appetite is half of what it was before, and she cannot lift heavy things. As a graduate student studying cancer biology, I had learned that chemotherapy would cause side effects like the ones I saw in my mom, including hair loss, vomiting, and nail loss. However, until my mom’s physical appearance and life were transformed by chemotherapy, I didn’t realize the magnitude of its impact on patients. Looking at my mom, I wish that we had better options for patients with early-stage breast cancer so they don’t have to suffer these devastating side effects.

Continue reading “Can Patients with Early-Stage Breast Cancer Skip Chemotherapy?”

Of Sporks and Scorpions: Where Do Genes Come From? (Part 1)

Author: Bryan Moyers

Editors: Theresa Mau, Alex Taylor, and Kevin Boehnke

What exactly separates us from other animals?  For that matter, what makes any species or group of species special?  How is life so diverse?  How can cephalopods camouflage themselves so well, and how did platypuses become so bizarre?

Part of the answer is in genes.  Genes are sections of DNA that perform a specific function, usually after being translated into proteins by special cellular machinery.  Every species has genes that code for proteins, but different species have different numbers of genes. Humans have around 20,000, fruit flies have around 18,000, and the tiny water-flea has around 31,000 genes. Different sets of genes produce animals with different structures and functions.

Continue reading “Of Sporks and Scorpions: Where Do Genes Come From? (Part 1)”

What Does Smoking Do to Your DNA?

Authors: Shweta Ramdas

Editors: Irene Park and Kevin Boehnke

Smoking 1
Figure 1. Smoking is known to cause at least 14 different types of cancers, although it is not clear how or why.

 

We have known tobacco to be a cause of many cancers for decades now. It is associated with it least 14 types of cancers (see Figure 1). Less understood is how tobacco causes cancer. The short answer—it causes mutations. Tobacco smoke is a mixture of many chemicals, including at least 60 carcinogens (cancer-causing chemicals).

A trans-national team of researchers has begun unearthing the distinct types of mutations caused by tobacco smoke to better understand the biological pathways leading to tobacco-induced cancer. They found that tobacco causes specific types of DNA damage in organs directly exposed to smoke (like the lungs) and that smoking tobacco generally leads to higher rates of mutation in all tissues. Understanding how the chemicals in tobacco smoke cause mutations can help scientists identify new and emerging mutagens and design better treatment strategies.

Continue reading “What Does Smoking Do to Your DNA?”

Training T Cell Assassins

Author: John Charpentier

Editors: Zena Lapp, Theresa Mau, and David Mertz

 

t_cell_assassin
Figure 1. An encounter between a CAR-T cell and a cancer cell

 

The assassins have a description of their targets, who are hiding in plain sight among the non-combatants. The targets are guerillas who’ve infiltrated the neighborhood, overwhelming the local authorities and fomenting chaos. After only minutes on patrol, the assassins go on the attack, quickly identifying and eliminating the enemy without harming a single bystander.

This scenario may sound like the plot of a Hollywood blockbuster, but it’s also a good metaphor to describe the activity of engineered immune cells against cancer cells. The assassins are called CAR-T (Chimeric Antigen Receptor-T) cells, and they receive their elite training at the hands of physicians and scientists, who teach them to recognize particular molecules on the surface of tumors.

Continue reading “Training T Cell Assassins”

Rabid: How to Beat a Gold-Medal Virus

Author: Shannon Wright

Editors: Ellyn Schinke, Jessica Cote, Alisha John

What is the most deadly virus in the world? The answer may surprise you. If we consider case fatality rate (the number of people infected who die from the virus if left untreated), it’s not Smallpox (20-60%), or even the Ebola virus (~50%), but rather, a common mammal-targeting virus you almost certainly have heard of: rabies. With no known cure, this infamous virus has a 100% fatality rate – certainly worthy of a gold-medal if we were giving out medals for how deadly viruses are.

Continue reading “Rabid: How to Beat a Gold-Medal Virus”