Microscopic Diversity: How and Why One Gene Creates Many Unique Proteins

Author: Jessica Cote

Editors: Zena Lapp, Christina Vallianatos, and Whit Froehlich

The Human Genome Project is one of the greatest scientific accomplishments in recent history— this international collaboration identified almost all of the ~20,500 genes in the human body, known collectively as the genome. Now that scientists know the details of these genes, they are better able to understand and treat human diseases associated with genetic factors. However, despite the immense effort put forth by over 30 research labs for 13 years (1990-2003), the information we gained from this project is limited. Genes serve as guidebooks for cells in the body to build proteins; genes themselves don’t perform the necessary cellular functions—proteins do. So, while scientists have now known the nitty-gritty of thousands of human genes for a while, the details of their protein products, known collectively as the proteome, are still quite puzzling.

Continue reading “Microscopic Diversity: How and Why One Gene Creates Many Unique Proteins”

Cómo las luciérnagas iluminaron nuestro entendimiento del mundo

Versión original en inglés escrita por Noah Steinfeld, traducida al español por Thibaut R. Pardo-García y editado por Sofía A. López.

A principios de 1950 en la Universidad Johns Hopkins, William E. McElroy, profesor joven, quiso descubrir que hace que las luciérnagas resplandezcan. Él le pagaba veinticinco centavos a niños en el área de Baltimore por cada 100 luciérnagas que le trajeran. McElroy era visto como una curiosidad en la comunidad: el estereotipo de un científico excéntrico. Pero, lo que estas personas no sabían es que, como resultado de su investigación, un día McElroy crearía una herramienta que revolucionaría la forma en que los científicos ejercen las investigaciones biológicas.

Continue reading “Cómo las luciérnagas iluminaron nuestro entendimiento del mundo”

Of Sporks and Scorpions: Where Do Genes Come From? (Part 1)

Author: Bryan Moyers

Editors: Theresa Mau, Alex Taylor, and Kevin Boehnke

What exactly separates us from other animals?  For that matter, what makes any species or group of species special?  How is life so diverse?  How can cephalopods camouflage themselves so well, and how did platypuses become so bizarre?

Part of the answer is in genes.  Genes are sections of DNA that perform a specific function, usually after being translated into proteins by special cellular machinery.  Every species has genes that code for proteins, but different species have different numbers of genes. Humans have around 20,000, fruit flies have around 18,000, and the tiny water-flea has around 31,000 genes. Different sets of genes produce animals with different structures and functions.

Continue reading “Of Sporks and Scorpions: Where Do Genes Come From? (Part 1)”

It’s all in the family! The biology of inheritance, part 1

Author: Shweta Ramdas

Editors: Molly Kozminsky, Jimmy Brancho, Kevin Boehnke


Harry Potter has his mother’s eyes. From his father, James, he inherits his black hair, his ability to play Quidditch, and a certain predisposition to mischief. We are all unique combinations of our parents, receiving half our DNA from each. In the genetic lottery, our parents’ genes are scrambled and spliced to create a new individual who carries on the family’s long tradition of snoring into one’s sheets. But besides a rickety knee, shortness of stature, and preferred pizza toppings, what else can we blame on our parents?

Continue reading “It’s all in the family! The biology of inheritance, part 1”

Michigan Meeting 2016 Coverage

microbe mtgs

MiSciWriters is proud to partner with the UM Center for Microbial Systems to provide live coverage of the 2016 Michigan Meeting “Unseen Partners: Manipulating Microbial Communities that Support Life on Earth.” In lieu of our traditional Tuesday post, we will be live-blogging the event at the links below, and live-tweeting from @MiSciWriters during the following times:

  • Monday, May 16 9:00am-3:30pm, 7:00-8:30pm
  • Tuesday, May 17 9:00am-3:30pm, 7:00-8:30pm
  • Wednesday, May 18 9:00-12:00

We hope you’ll join in the conversation by commenting on the blog, or tweeting with the hashtag #MiMicrobe. Enjoy!

Update: Live blogging coverage is released as an event unfolds, placing the posts in reverse-chronological order. So if you want to read everything, start from the bottom of the page.

Monday, May 16 Coverage – https://misciwriters.com/portfolio/michigan-meeting-2016-monday/ 

Tuesday, May 17 Coverage – https://misciwriters.com/portfolio/michigan-meeting-2016-tuesday/

Wednesday, May 18 Coverage – https://misciwriters.com/portfolio/michigan-meeting-2016-wednesday/

Evolvability: The race against extinction

By Bryan Moyers

It’s easy to think that evolution only works over long periods of time.  As much as 4.1 billion years ago, life began on Earth.  Some 420 million years ago, animals found their way onto land. Around 65 million years ago, an asteroid wiped out most dinosaurs. Two million years ago, our genus, Homo, emerged.  It almost seems like evolution is a strictly theoretical field.  After all, evolution doesn’t affect things in our lifetime…  right?

Continue reading “Evolvability: The race against extinction”

Virus vs. Bacteria: Mortal combat

By Ada Hagan

Every predator is prey to something. The antelope falls to the lion, the lion falls to the human, and the human, to viruses and bacteria. Bacterial infection is one of the things we fear most. Infections from antibiotic-resistant bacteria can conquer the strongest and smartest of us.  But… do the bacteria that live in and around us, that even prey on us, have a predator themselves?

Yes. They do. There is an enormous amount of variety in viruses and the types of cells they infect, so just as there are viruses that infect human cells, there are viruses called bacteriophages that prey on bacteria. Like other predators and their prey, bacteriophages and bacteria are locked in a bitter evolutionary arms race. Continue reading “Virus vs. Bacteria: Mortal combat”