Recent Advances in Cervical Cancer Research

Author: Veronica Varela

Editors: Whit Froehlich, John Charpentier, and Scott Barolo

Cervical cancer has been getting much more attention as of late, partly due to the HBO adaptation of Rebecca Skloot’s book The Immortal life of Henrietta Lacks. As a survivor of the same type of cancer that took Henrietta’s life and led to the development of the HeLa cell line, I found that Skloot’s book resonated deeply with me. My diagnosis compelled me to learn more about cervical cancer, which is one of the most preventable forms of cancer.

What Is Cervical Cancer?

VV1
Figure 1. A diagram showing a stage IV cervical cancer (tumor is in blue)

Cervical cancer is an abnormal and uncontrolled growth of the cells lining the cervix, which acts like the doorway to the uterus. The cervix lining is mostly made up of two different cell types. Lining the outer cervix that faces the vagina are squamous cells, which are flat in shape, while the open passage of the cervix which leads into the uterus is lined by glandular cells, which are blockier in shape and produce mucus. Cancer can arise from either of these cell types; however, squamous cell cancers are the more frequent.

Most cervical cancers are caused by Human Papilloma Virus (HPV). HPV is commonly known as the virus that causes genital warts, but what many don’t realize is that there are over a dozen types of sexually transmitted HPVs, and only a few of them result in genital warts. The National Institutes of Health (NIH) highlight that persistent infection with certain HPV strains, especially types 16 and 18, is the major cause of most cervical cancer cases.

Continue reading “Recent Advances in Cervical Cancer Research”

Training T Cell Assassins

Author: John Charpentier

Editors: Zena Lapp, Theresa Mau, and David Mertz

 

t_cell_assassin
Figure 1. An encounter between a CAR-T cell and a cancer cell

 

The assassins have a description of their targets, who are hiding in plain sight among the non-combatants. The targets are guerillas who’ve infiltrated the neighborhood, overwhelming the local authorities and fomenting chaos. After only minutes on patrol, the assassins go on the attack, quickly identifying and eliminating the enemy without harming a single bystander.

This scenario may sound like the plot of a Hollywood blockbuster, but it’s also a good metaphor to describe the activity of engineered immune cells against cancer cells. The assassins are called CAR-T (Chimeric Antigen Receptor-T) cells, and they receive their elite training at the hands of physicians and scientists, who teach them to recognize particular molecules on the surface of tumors.

Continue reading “Training T Cell Assassins”