What Does Smoking Do to Your DNA?

Authors: Shweta Ramdas

Editors: Irene Park and Kevin Boehnke

Smoking 1
Figure 1. Smoking is known to cause at least 14 different types of cancers, although it is not clear how or why.

 

We have known tobacco to be a cause of many cancers for decades now. It is associated with it least 14 types of cancers (see Figure 1). Less understood is how tobacco causes cancer. The short answer—it causes mutations. Tobacco smoke is a mixture of many chemicals, including at least 60 carcinogens (cancer-causing chemicals).

A trans-national team of researchers has begun unearthing the distinct types of mutations caused by tobacco smoke to better understand the biological pathways leading to tobacco-induced cancer. They found that tobacco causes specific types of DNA damage in organs directly exposed to smoke (like the lungs) and that smoking tobacco generally leads to higher rates of mutation in all tissues. Understanding how the chemicals in tobacco smoke cause mutations can help scientists identify new and emerging mutagens and design better treatment strategies.

Continue reading “What Does Smoking Do to Your DNA?”

Training T Cell Assassins

Author: John Charpentier

Editors: Zena Lapp, Theresa Mau, and David Mertz

 

t_cell_assassin
Figure 1. An encounter between a CAR-T cell and a cancer cell

 

The assassins have a description of their targets, who are hiding in plain sight among the non-combatants. The targets are guerillas who’ve infiltrated the neighborhood, overwhelming the local authorities and fomenting chaos. After only minutes on patrol, the assassins go on the attack, quickly identifying and eliminating the enemy without harming a single bystander.

This scenario may sound like the plot of a Hollywood blockbuster, but it’s also a good metaphor to describe the activity of engineered immune cells against cancer cells. The assassins are called CAR-T (Chimeric Antigen Receptor-T) cells, and they receive their elite training at the hands of physicians and scientists, who teach them to recognize particular molecules on the surface of tumors.

Continue reading “Training T Cell Assassins”

GMOs: Unjustified Fear or Actual Danger? (Part 1)

Author: Irene Park

Editors: Brittany Dixon, Theresa Mau, Alisha John, and Scott Barolo

gmo1
Figure 1: A “Non-GMO Project Verified” product label

It seems like “Non-GMO Project Verified” labels have been popping up on more and more food packages. GMOs (genetically modified organisms) are on the public’s mind, and food manufacturers, restaurants, and the government are reacting.

For example, the restaurant chain Chipotle recently promised to ban genetically modified ingredients, naming three main reasons: the long-term health effects of consuming GMOs are unknown; GMOs harm the environment; and GMOs do not meet the restaurant’s standard of “high-quality” food.

Continue reading “GMOs: Unjustified Fear or Actual Danger? (Part 1)”

How Your Electronic Health Records Could Help Biomedical Research

Author: Brooke Wolford

Editors: Jimmy Brancho, Shweta Ramdas, Bryan Moyers

Think back to the last time you visited your primary care physician. Was the health care provider using a laptop or tablet to take notes and update your health information? In many doctors’ offices across the country your health records have gone digital. In addition to their exciting potential to help doctors’ offices reduce human error and better serve patients, electronic health records (EHRs) also make available a new source of “big data” for researchers.

EHRs are patient-specific digital records your health care provider maintains. The information in your EHR helps your doctor efficiently track your health over time and helps researchers learn more about diseases, which ultimately improves the clinical care your doctor provides to you and other patients. Believe it or not, EHRs from patients like you and me have already helped researchers make discoveries that improve health care for everyone!

Continue reading “How Your Electronic Health Records Could Help Biomedical Research”

Rabid: How to Beat a Gold-Medal Virus

Author: Shannon Wright

Editors: Ellyn Schinke, Jessica Cote, Alisha John

What is the most deadly virus in the world? The answer may surprise you. If we consider case fatality rate (the number of people infected who die from the virus if left untreated), it’s not Smallpox (20-60%), or even the Ebola virus (~50%), but rather, a common mammal-targeting virus you almost certainly have heard of: rabies. With no known cure, this infamous virus has a 100% fatality rate – certainly worthy of a gold-medal if we were giving out medals for how deadly viruses are.

Continue reading “Rabid: How to Beat a Gold-Medal Virus”

Superbugs and a new school year: How you can help slow antibiotic resistance

Author: Carrie Johnson

Editors: Ada Hagan, Irene Park

Whether you have heard about it or not, antibiotic resistance is a growing threat that affects us all.

For generations, we have benefited from antibiotics to fight bacterial infections that would otherwise threaten our lives.  Unfortunately, the effectiveness of antibiotics is increasingly at risk.  Bacterial infections resistant to antibiotics already have already taken a significant toll and the severity of the problem is only growing.  In the United States, it already costs us over 23,000 lives and an estimated $55 billion each year.

As we head into a new school year and the colder winter months when illness risks seem to rise, the timing couldn’t be better to remind you that everyone (yes, you!) plays a role in combating this growing problem of antibiotic resistance. But first we need to understand the basics of this problem, including the three major factors at play.

Continue reading “Superbugs and a new school year: How you can help slow antibiotic resistance”

De-coupling the GMO-glyphosate link

Author: Amira Aker

Editors: Brittany Dixon, Kevin Boehnke

Tinkering with an organism’s genes is the subject of one of the most controversial debates today – and rightfully so. The resulting organisms are commonly referred to as genetically modified organisms (GMOs), and figuring out how to use GMOs in a safe and sustainable manner is hotly debated. This issue isn’t simply a matter of technology, but one of safety, ecology, economics and even morality. Yet, there has been a notable absence of discussion around the broad-based herbicide glyphosate in mainstream media; namely, that over 80% of GMOs on the market today are modified to tolerate glyphosate. This effective herbicide kills pesky weeds without affecting farmers’ GMO crops, saving time and, potentially, money. However, given the vast opportunities that GMO science opens to us, is dedicating so many resources to this single GMO product the right way to go? Continue reading “De-coupling the GMO-glyphosate link”