Category: Microbiology

To Complete or Not Complete (The Full Course of Antibiotics)

Author: Katie Wozniak

Editors: Tricia Garay, Charles Lu, and Shweta Ramdas

You may recall going to your doctor and being told to “complete the full course” of antibiotics that were prescribed to you. Over the last 70 years antibiotics have been used to treat bacterial infections. The CDC, FDA, and WHO have pointed out that some bacteria could remain in your system if you stop taking the prescribed antibiotics before completing the full course, even if you feel better. This remaining population consists of bacteria that could survive the antibiotics the best; this select group of resistant bacteria is then allowed to grow and re-infect you with a vengeance. However, a recently published article in one of the oldest medical journals questioned these age-old instructions and suggested alternatives. In the era of antibiotic overuse and resistant infections, should we still complete the full course of antibiotics?

Analyzing without Lysing: Non-Damaging Techniques for Monitoring Cells

Author: Sarah Kearns

Editors: Whit Froehlich, Ada Hagan, and Irene Park

The interior of a cell is inherently complex with a myriad of processes going on all at once. Despite the clean images that are commonly shown in diagrams and textbooks, the parts inside are more of a whirlwind of structural components, proteins, and products (see Figure 1).

23May17-1+2

Figure 1. Left is a cartoon image of a whole cell highlighting the different organelles (cellular compartments). Right is a computer simulation of the cytoplasm, the fluid between organelles. There are thousands of chemical processes going on within it.

Spinach and siderophores, part 2: Getting the upper hand

Author: Ada Hagan

Editors: Alisha John, Scott Barolo

As we discussed last time, bacteria that infect the human body face a major challenge: iron, which is essential for bacterial growth, is hard to obtain from human tissues.  Many pathogenic bacteria solve this problem by deploying “stealth siderophores,” which steal iron from human iron-binding proteins while evading our defenses. In the battle between humans and pathogenic bacteria, our best weapons, antibiotics, are being weakened by widespread resistance. Is there a way to use bacteria’s need for iron against them?

Spinach and siderophores: The bacterial battle for iron

Author: Ada Hagan

Editors: Alisha John, Irene Park

Many remember the boisterous, muscle-bound, tattooed sailor Popeye and the thin-as-a-rail Olive Oyl from Saturday morning cartoons. In times of need, such as when his rival Bluto stole Olive Oyl for the 50th time, Popeye would squeeze open a tin can of spinach. Eating the spinach, sometimes miraculously through his corn-cob pipe, gave Popeye that extra boost of energy needed to escape his bonds and rescue his lady-friend. What was so special about spinach that gave Popeye his superpower?

In silico biology: How math and computer science teach us about life

Author: Hayley Warsinske

Editors: Molly Kozminsky, Ellyn Schinke, Irene Park

We live in a world of science and technology. Biomedical research helps improve our lives everyday by providing us with vital information about everything from hygiene to Alzheimer’s disease. Computers provide us with access to wealth of information on any subject in an instant and expedite many of our daily activities. Often these two worlds overlap and computers are also used to provide scientists with information about our own health and survival to facilitate biomedical research.

Superbugs and a new school year: How you can help slow antibiotic resistance

Author: Carrie Johnson

Editors: Ada Hagan, Irene Park

Whether you have heard about it or not, antibiotic resistance is a growing threat that affects us all.

For generations, we have benefited from antibiotics to fight bacterial infections that would otherwise threaten our lives.  Unfortunately, the effectiveness of antibiotics is increasingly at risk.  Bacterial infections resistant to antibiotics already have already taken a significant toll and the severity of the problem is only growing.  In the United States, it already costs us over 23,000 lives and an estimated $55 billion each year.

As we head into a new school year and the colder winter months when illness risks seem to rise, the timing couldn’t be better to remind you that everyone (yes, you!) plays a role in combating this growing problem of antibiotic resistance. But first we need to understand the basics of this problem, including the three major factors at play.

Virus vs Bacteria: The grand scheme

Author: Ada Hagan

Editors: Patricia Garay, Ellyn Schinke, Irene Park

In “Virus vs Bacteria: Mortal combat” we learned that bacteriophage (phage) are a group of viruses that literally prey on bacteria and archaea. Phage fill a predatory role in their native ecosystems, helping to keep prey populations in check, in turn preventing exhaustion of available resources. We also explored in “Virus vs Bacteria: Enemy of my enemy” how humans can exploit these bacterial predators to be useful in a number of ways. But there’s quite a bit more to phage than meets the eye. New research is beginning to show us additional ecological impacts phage have on their environments—ones that can play a role in challenges humans face such as climate change and antibiotic resistance.

Virus vs. Bacteria: Enemy of my enemy

By Ada Hagan

In 1917, almost a century ago, a French-Canadian scientist, Felix d’Herelle, and his colleagues discovered bacteriophage. As I discussed in a previous post, bacteriophage (phage) are the viruses that prey on bacteria, turning them into viral factories. The battle between phage and bacteria has raged for millennia, resulting in a beautiful co-evolution where predator and prey each grapple for a temporary upper hand.

We’ve been exploring the depths of this complex relationship, searching for ways to use this enemy of our enemy as a tool against the bacterial infections that plague us. Along the way, we’ve found a number of different techniques to exploit these micro-allies.

Defending human health: A thankless job

By Ellyn N. Schinke

Growing up, I was an avid soccer player. But, I never wanted the glory of being a team’s leading scorer. Defense was my home. That is until I scored my first goal. I was elated, but quickly realized that I had never in my time on defense received anywhere near the validation that I had for that goal. I could save goals or shut down the other team’s star player, but that usually went unnoticed. If anything, I was typically criticized for something I didn’t do more often than I was praised for something I did. This experience taught me something important – defense is a thankless job.

The same pattern that I saw in my soccer experience happens all the time with public health.

Michigan Meeting 2016 Coverage

microbe mtgs

MiSciWriters is proud to partner with the UM Center for Microbial Systems to provide live coverage of the 2016 Michigan Meeting “Unseen Partners: Manipulating Microbial Communities that Support Life on Earth.” In lieu of our traditional Tuesday post, we will be live-blogging the event at the links below, and live-tweeting from @MiSciWriters during the following times:

  • Monday, May 16 9:00am-3:30pm, 7:00-8:30pm
  • Tuesday, May 17 9:00am-3:30pm, 7:00-8:30pm
  • Wednesday, May 18 9:00-12:00

We hope you’ll join in the conversation by commenting on the blog, or tweeting with the hashtag #MiMicrobe. Enjoy!

Update: Live blogging coverage is released as an event unfolds, placing the posts in reverse-chronological order. So if you want to read everything, start from the bottom of the page.

Monday, May 16 Coverage – https://misciwriters.com/portfolio/michigan-meeting-2016-monday/ 

Tuesday, May 17 Coverage – https://misciwriters.com/portfolio/michigan-meeting-2016-tuesday/

Wednesday, May 18 Coverage – https://misciwriters.com/portfolio/michigan-meeting-2016-wednesday/