Trasplante de Órganos de Cerdos a Humanos Podría Ser Posible en el Futuro Gracias a la Ingeniera Genética

Escrita por Attabey Rodríguez Benitez y editado por Cristina Maria Rios.

¿Te imaginas un futuro en el que los humanos podamos recibir órganos de animales en lugar de esperar por un donante? Esto podría ser posible gracias a una investigación llevada a cabo por una colaboración internacional entre laboratorios de Harvard y China que resultó en una publicación en la revista científica Science.

Continue reading “Trasplante de Órganos de Cerdos a Humanos Podría Ser Posible en el Futuro Gracias a la Ingeniera Genética”

Ciencia y redes sociales: Como el “compartir de más” está ayudando al campo de la genética humana

Versión original en inglés escrita por Christina Vallianatos, traducida al español por Adrian Melo Carrillo y editado por Jean Carlos Rodriguez Diaz.

Vivimos en una época en la cual compartimos de más.  Desde tu mejor amigo compartiendo sus fotos artísticas de comida (#boozybrunch), hasta tu colega tuiteando en tiempo real su experiencia de parto (“¡Cesárea en 20 minutos!”), parece que constantemente nos enteramos de detalles íntimos de todo el mundo.

¿Qué pasaría si alguno de esos momentos en que compartimos demasiada información no fueran necesariamente “demasiada información”? ¿Y si estos momentos estuvieran de hecho ayudando a resolver una de los mayores dilemas en el campo de la genética humana: la identificación de genes causantes de enfermedades?

Continue reading “Ciencia y redes sociales: Como el “compartir de más” está ayudando al campo de la genética humana”

Organ Transplantation from Pigs to Humans Could Be Possible, Thanks to Gene Editing

Author: Attabey Rodríguez Benítez

Editors: Sarah Kearns, Jimmy Brancho, and Whit Froehlich

Can you imagine a future where humans could receive organs from animals instead of having to wait for a donor? Well, this could be possible thanks to evidence from an international collaboration between labs in Harvard and China which resulted in a publication in the prestigious journal Science.

Continue reading “Organ Transplantation from Pigs to Humans Could Be Possible, Thanks to Gene Editing”

Lo que quiere la nariz: ¿Por qué el olor a gasolina es irresistible para algunos?

For the first post in our Spanish series, The Language Bank* at the University of Michigan translated a post written by Shweta Ramdas: “What the Nose Wants: Why the Scent of Gasoline is Irresistible to Some.”

Por Shweta Ramdas 

Traducido por Joan Liu*

Editado por Yanaira Alonso

Hace acerca de un mes, le comenté a mis compañeros de laboratorio que el olor a la gasolina era un tanto irresistible y que había robado un marcador de pizarra de nuestro laboratorio para olerlo cuando me sentía frustrada con mi investigación. Esto tuvo dos resultados: ahora mis colaboradores de laboratorio se burlan de mí despiadadamente, y me di cuenta de que no todos se sienten atraídos a estos olores tanto como yo.

El último resultado fue una epifanía: pensaba que para todo el mundo el olor a gasolina era agradable. Entonces, ¿Por qué esto no es cierto? Como una genetista, por supuesto mi primer pensamiento fue que los genes deciden la preferencia.

pic (2)
A mi compañero de laboratorio no le atrae el olor del marcador tanto como a mí.

Continue reading “Lo que quiere la nariz: ¿Por qué el olor a gasolina es irresistible para algunos?”

Placebos: Tricking the Brain, Targeting the Body

Author: Shweta Ramdas
Editors: Charles Lu, Whit Froehlich, and Scott Barolo

Screen Shot 2017-07-13 at 2.16.39 PM
Placebo or Nocebo?

Last year, when I pooh-poohed my mother’s alternative medicine regimen, she said, “But these actually work well for me, because I believe in them!” My mother had just outsmarted me with science.

The placebo effect is one of the most remarkable yet least understood phenomena in science. It is a favorable response of our body to a medically neutral treatment (sugar pills, anybody?): in other words, a placebo is a fake treatment that produces a very real response. This is attributed to a physical reaction stemming from a psychological response to the administration of therapy. You could say that a patient sometimes gets better anyway—how many times have we waited out the common cold—and you would be right. This natural return to the baseline which can happen is not considered the placebo effect, which is an improvement in response to a treatment.

Continue reading “Placebos: Tricking the Brain, Targeting the Body”

Where Do Genes Come From? Part 2: De novo Genes

Author: Bryan Moyers

Editors: Theresa Mau, Alex Taylor, and Kevin Boehnke

“The probability that a functional protein would appear de novo by random association of amino acids is practically zero.” ~ Francois Jacob, 1977

If you’ve ever gotten into arguments about evolution, you may have heard the argument that goes something like this: A new gene randomly forming is as improbable as a tornado blowing through a junkyard and assembling a working 747. The above quote by Francois Jacob shows that scientists have been pretty skeptical about this idea, too.

But something seeming unlikely doesn’t mean that it doesn’t happen. As we learned last time, most mutations are harmful, and most gene duplications are lost—but the rare times when they are beneficial, a new gene can have a huge effect on species survival.

So, is it possible that a protein-coding gene might form randomly? Continue reading “Where Do Genes Come From? Part 2: De novo Genes”

Of Sporks and Scorpions: Where Do Genes Come From? (Part 1)

Author: Bryan Moyers

Editors: Theresa Mau, Alex Taylor, and Kevin Boehnke

What exactly separates us from other animals?  For that matter, what makes any species or group of species special?  How is life so diverse?  How can cephalopods camouflage themselves so well, and how did platypuses become so bizarre?

Part of the answer is in genes.  Genes are sections of DNA that perform a specific function, usually after being translated into proteins by special cellular machinery.  Every species has genes that code for proteins, but different species have different numbers of genes. Humans have around 20,000, fruit flies have around 18,000, and the tiny water-flea has around 31,000 genes. Different sets of genes produce animals with different structures and functions.

Continue reading “Of Sporks and Scorpions: Where Do Genes Come From? (Part 1)”